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In the present work a new SPH model for simulating interface and free surface flows is pre-
sented. This formulation is an extension of the one discussed in Colagrossi and Landrini
(2003) and is related to the one proposed by Hu and Adams (2006) to study multi-fluid
flows. The new SPH scheme allows an accurate treatment of the discontinuity of quantities
at the interface (such as the density), and permits to model flows where both interfaces
and a free surface are present. The governing equations are derived following a Lagrangian
variational principle leading to an Hamiltonian system of particles. The proposed formula-
tion is validated on test cases for which reference solutions are available in the literature.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Multi-fluid flows play a significant role in numerous engineering applications characterized by strong dynamics of the
flow (e.g. flows involved in mixing/separation devices, engines, propellers with cavitation, etc.). With respect to this, the
SPH scheme has proved to be a valuable candidate as simulation method (see for example [2,3]). Even for that flows (i.e. jets,
sprays, impacts, free surface reconnections, etc.) which are generally modeled by using one-fluid SPH scheme (see e.g. [4]),
the air phase can have a large influence on the flow evolution and on the subsequent loads on structures. In this context, the
main advantage of the SPH model is that fluid elementary volumes are followed in their Lagrangian motion and, conse-
quently, the interface between two fluids will remain sharply described. Hence, the interface will not be diffused like in stan-
dard mesh-based methods (Volume Of Fluids, Level-Set, Constrained Interpolation Profile, etc.).

Nonetheless, although the classical SPH formulation succeeds in correctly simulating one-fluid flows, the presence of an
interface and the physical conditions associated make a stable two fluid formulation more difficult to derive. The main issue
is the estimation of the ratio between the pressure gradient and the density inside the momentum equation, since the den-
sity is discontinuous when crossing the interface. Since the SPH scheme relies on a smoothing procedure (namely, each par-
ticle is associated to a compact support on which the smoothing is made), the accuracy in modeling sharp discontinuities
worsens when the compact support intersects the interface. Indeed, in this eventuality, the density of the fluid on the other
side of the interface spuriously influences both the local density and pressure fields and, consequently, the acceleration of
the concerned particle.
. All rights reserved.
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In the present work a new SPH formulation for simulating interface flows is presented. It is an extension of the formu-
lation discussed in Colagrossi and Landrini [1] and it is based on the Lagrangian variational approach introduced by Bonet
and Lok [5]. Following this procedure, the derived system of particles results to be Hamiltonian.

The resulting formulation presents similarities with the one proposed by Hu and Adams [2] for incompressible multi-fluid
flows. However, among other differences, the present formulation permits to model multi-fluid flows together with the pres-
ence of a free surface (i.e. an interface between liquids and air where the air phase is considered as being at constant pressure
with zero velocity).

Further, in the present formulation a specific attention is paid to enhance the accuracy of the scheme, especially through
the use of a Shepard kernel. The latter kernel allows us to accurately preserve the discontinuity of the density across inter-
faces. To do so, an original variant of gradient renormalization formula of the Shepard kernel is derived, which differs from
the one usually associated to this kernel in the literature [6].

After a detailed description of the proposed formulation, a number of validations are performed on test cases for which
reference solutions are available in the literature. First, an air bubble rising by gravity in a water column at rest is studied
providing a comparison to Level-Set simulations. Then, Rayleigh–Taylor instabilities are investigated in terms of accuracy
and convergence and again compared to Level-Set simulations. Finally, the capabilities of the proposed formulation are illus-
trated by modeling the gravity currents generated after a lock-release. The latter case involves two different kinds of liquids
and the free surface dynamics.

2. Physical model

In the present work we model the Navier–Stokes equations in the fluid domain X including several viscous Newtonian
fluids. Fig. 1 shows that X is composed by different fluids A;B; . . . so that X ¼ A [ B [ . . .. The boundaries of the domain
X are the free surface @XF and the solid boundaries @XB.

The conservation of the momentum in X is written in Lagrangian formalism as
q
Du
Dt
¼ �rpþ FV þ FS þ FB ð1Þ
where u, p and q are respectively the velocity, the pressure and the density fields, while FV; FS; FB represent the viscous, the
surface tension and the external body forces.

The location of a generic material point X at time t is described by xðtÞ through
xðtÞ ¼ /ðX; tÞ ð2Þ
where / is the map which links the Lagrangian coordinates X with the physical ones x.
Weakly compressible fluids are considered. Under this assumption the pressure field can be directly linked to the density

field neglecting the dependency on the specific entropy s. Therefore the fluids considered are barotropic and the equation of
state reduces to p ¼ f ðqÞ. Here the Tait equation is considered
p ¼ c2
0q0

c
q
q0

� �c

� 1
� �

ð3Þ
where c0 is the speed of sound in the condition q ¼ q0. From Eq. (3) derives that the speed of sound follows a polytropic law
with a characteristic exponent c.

To verify the weakly-compressibility hypothesis, the speed of sound c0 must be at least ten times greater than the max-
imum fluid velocity. Then the inequality
c0 > 10 maxðjujÞX ð4Þ
has to be always satisfied. Condition (4) guarantees that the density variations are always smaller than 1%q0. Nonetheless,
for computational and numerical reasons one generally does not use the real speed of sound of the considered fluids. This
only affects the acoustics of the solution, leaving unaffected the flow evolution (see e.g. [7]). The condition (4) on the Mach
number M ¼ juj=c < 0:1 is thus satisfied by choosing a fictitious speed of sound.
Fig. 1. Fluid domain X composed by different fluids A;B; . . .
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The continuity equation is written as
D logJ
Dt

¼ divðuÞ; J ¼ q0ðXÞ
qðX; tÞ ¼

vðX; tÞ
v0ðXÞ

ð5Þ
where the Jacobian determinant J is linked to the map / (see Eq. 2) through
J ¼ detðFÞ; F ¼ @x
@X
J represents the ratio between the initial and the current densities, or between the specific volume and the initial one.
Summarizing, the governing equations used in this work are
D logJ
Dt ¼ divðuÞ; vðX; tÞ ¼ J ðX; tÞv0ðXÞ; qðX; tÞ ¼ 1

vðX;tÞ

pðX; tÞ ¼ c2
0Xq0X
cX

qðX;tÞ
q0X

� �cX � 1
h i

; 8X 2 X

q Du
Dt ¼ �rpþ FV þ FS þ FB; Dx

Dt ¼ u

8>>><
>>>:

ð6Þ
where X indicates a generic weekly-compressible fluid in the domain X.
Boundary conditions. Appropriate boundary conditions on @X ¼ @XF [ @XB have to be enforced to solve the system of par-

tial differential Eq. (6). The fluid boundary @X is composed by a free surface @XF and solid boundaries @XB. Along the free
surface, two conditions must be verified. The kinematic condition implies that the fluid particles initially on @XF will remain
on it. If no surface tension and viscous effects are taken into account, the dynamic condition states that the pressure is con-
tinuous across @XF , therefore equal to the external pressure pe present on the other side. When pe is constant, a trivial change
of pressure reference leads to p ¼ 0 on the free surface, which is commonly used by SPH practitioners. These two conditions
are implicitly verified in the SPH formalism (see [8] for an extensive discussion).

On solid boundaries @XB, a free-slip or a no-slip condition has to be modeled. A way to enforce this condition is to use a
local mirroring of the flow on the other side of the solid boundary, at each time step (see [1]). Adequate (symmetric or anti-
symmetric) physical quantities are then given to the mirrored particles. The efficiency of this ‘ghost’ approach has been
underlined by Monaghan in his review of the SPH method [9]. The use of this technique has been extensively validated both
in terms of flow kinematics and dynamics through various applications (see e.g. [7,10,11]).
3. Principle of virtual works (PVW)

In the present section we discuss the conservation properties of the considered fluids. This can be done following a
Lagrangian variational principle as done by several authors (see e.g. [9,12]), or equivalently following the variational prin-
ciple used by Bonet and Lok [5]. Here we write the principle of virtual work (PVW) in its general form
Z
X
rp � dwdV ¼

Z
X

dpdm ¼ dP ð7Þ
where dp is the variation of the specific internal energy due to the virtual displacement field dw, while dm is the elementary
mass qdV . This theorem states that in absence of mechanical work due to external forces and viscous dissipations, the work
done by the pressure forces due to a generic virtual displacement field dw has to be balanced by the total variation of the
internal energy dP of the fluid-dynamic system. It must be noted that in Eq. (7) the work of the stress tensor on the free
surface does not appear since it is null by definition (see [8] for a detailed discussion).

Assuming the fluid to be isentropic, the variation dp is directly linked to the variation dq of the density field due to the
virtual displacement dw (see e.g. [9]):
dp ¼ p
q2 dq; dq ¼ �qdivðdwÞ ð8Þ
The second equation is the continuity equation expressed in terms of dq and dw.
Therefore Eq. (7) can be rewritten in the following two forms
ðaÞ
R

Xrp � dwdV ¼
R

X
p
q2 dqdm ¼ dP

ðbÞ
R

Xrp � dwdV ¼ �
R

X pdivðdwÞdV ¼ dP
ð9Þ
In [5,13] it is shown that these equalities play an important role when the governing equations are discretized on a system of
particles (i.e. when the material point X becomes an elementary fluid volume). Indeed once the discrete form for the vari-
ation dq or for the divergence operator are chosen, the discrete form for the pressure gradient rp has to satisfy (9), see [8].
Such a procedure ensures the system of particles to be Hamiltonian. In the next section it will be shown how this procedure
can be used for deriving different SPH formulations.
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4. Numerical model

4.1. Integral interpolation

In the SPH method, the fluid domain X is discretized in a finite number N of particles representing elementary fluid vol-
umes DV , each one with its own local mass Dm and other physical properties. In this context a generic field f is approximated
at a generic position x through the convolution sum
1 Con
hf iðxÞ ¼
X

j

fjWðx� xjÞDVj ð10Þ
where fj is the value of f associated to the generic particle j;DVj is its volume and finally Wðx� xjÞ is a kernel function. In
practical SPH computations, the choice of the kernel function affects both the CPU requirements and the stability properties
of the algorithm. In this work a Gaussian kernel with a compact support has been adopted:
WjðxiÞ ¼WðrÞ ¼
1

ph2
e�ðr=hÞ2�C0

1�C1

h i
if r 6 dh

0 otherwise

8<
: ð11Þ

C0 ¼ e�d2
; C1 ¼ C0ð1þ d2Þ
where r ¼ kxj � xik is the Euclidean distance between the two particles. The length dh represents a cut-off radius, typically
set equal to 3h as for the classical fifth-order B-spline support [14], h is called smoothing length and when it goes to zero
the kernel function W becomes a delta Dirac function. Note that the integration of the function (11) on its support is equal
to one. Choosing d ¼ 3 the constant C0 and C1 are respectively C0 ’ 10�4 and C1 ’ 10�3. This choice is motivated by the
fact that, from a numerical point of view, the behaviour of the kernel (11) is almost identical to the classical Gaussian
kernel with unbounded domain (i.e. d!1). In fact, the maximum of the relative error between the two kernels is about
0.1%.

For what concerns the latter one the following properties are well established: (i) among ten tested kernel shapes, the
Gaussian kernel appears to give the best numerical accuracy in the stable field [15]; (ii) the comparison of the Gaussian ker-
nel to classically used spline kernels showed that the former leads to better stability properties [16]; (iii) it presents also a
lower computational cost with respect to evolved forms of spline kernels [7]; finally (iv), its gradient can be straightfor-
wardly obtained from the evaluation of W itself.

The spatial derivatives of the field f evaluated at the particle positions can be estimated using the formula (10)
hrf iðxÞ ¼
X

j

ðrf ÞjWjðxÞDVj ð12Þ
After some manipulation (for more details see [8]) it is possible to move the gradient operator to the kernel and the previous
formula can be approximated by
hrf iðxÞ ¼
X

j

fjrWjðxÞDVj � f ðxÞ
X

j

rWjðxÞDVj ð13Þ
wherer denotes the derivative with respect to x. Far from the free surface the second term of Eq. (13) is small in comparison
to the first one while it increases when getting closer to it; therefore this term acts as a boundary term (see [8] for more
details).

One can note that this formula permits to recover exactly the null gradient of a constant function.1

Kernel Renormalization. The interpolation formula (10) cannot be applied to regions close to the free surface since
CðxÞ ¼

P
jWjðxÞDVj decreases there due to the absence of points on the other side of this boundary. For example, near a flat

free surface CðxÞ approximately gives 0.5 instead of 1. To recover an accurate interpolation a renormalization of the kernel
function is introduced
� f � ðxÞ ¼
P

j
fjW

S
j ðxÞDVj;

WS
j ðxÞ ¼

WjðxÞ
CðxÞ ; CðxÞ ¼

P
k

WkðxÞDVk

8>>><
>>>:

ð14Þ
where the new kernel WS is known in the literature as Shepard kernel (see e.g. [6]).
Then, substituting the Shepard kernel in Eq. (12), after some manipulations we get
� rf � ðxÞ ¼ 1
CðxÞ

X
j

fj rWjðxÞDVj �
f ðxÞ
CðxÞ

X
j

rWjðxÞDVj ð15Þ
versely, if f is linear the formula (13) does not permit to recover the exact value of the gradient, so it is complete only at zero-th order (see e.g. [6]).
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It must be underlined that this form does not correspond to the one obtained after differentiation of the Shepard kernel [6].
Indeed, in the latter case one obtains
X
j

fjrWS
j ðxÞDVj ¼

1
CðxÞ

X
j

fjrWjðxÞDVj �
� f � ðxÞ

CðxÞ
X

j

rWjðxÞDVj ð16Þ
which clearly differs from Eq. (15) since a Shepard interpolation of the field f appears in the second term.
Summarizing, the interpolation formul� which will be considered in the following are
A

hf iðxÞ ¼
P

j
fjWjðxÞDVj

hrf iðxÞ ¼
P

j
½fj � f ðxÞ�rWjðxÞDVj

8><
>:

B

� f � ðxÞ ¼
P

j
fj

WjðxÞ
CðxÞ DVj

� rf � ðxÞ ¼
P

j
½fj � f ðxÞ� rWjðxÞ

CðxÞ DVj

8>><
>>:

ð17Þ
where formul� A are the ones usually used in the literature while formul� B are the ones adopted in the present SPH
formulation.

4.2. SPH formulations for interface flows with n-terms.

Consider a density field approximated through Eq. (10)
hqiðxÞ ¼
X

j

qjWjðxÞDVj ð18Þ
If a direct relationship between the particle mass Dmj, density qj and elementary volume DVj is assumed (i.e. qj ¼ Dmj=DVj),
the formula (18) becomes
hqiðxÞ ¼
X

j

DmjWjðxÞ ð19Þ
This formula was used in the original SPH scheme and allows to evaluate the density field once the spatial distribution of the
particle masses Dmj is known. One can note that using this formula time integration of the continuity equation is not nec-
essary. Unfortunately expression (19) is not able to represent the sharp density discontinuity across the interface between
two immiscible fluids. To overcome this difficulty, a different approach is used by Hu and Adams [2] who evaluate the den-
sity field through
hqiðxiÞ ¼ Dmi

X
j

WjðxiÞ ð20Þ
or introducing a n-term
hqiðxiÞ ¼ Dmini; ni ¼
X

j

WjðxiÞ ð21Þ
This formula is able to reproduce density discontinuities inside the domain X. Actually, the density of the generic ith par-
ticle is not influenced by the masses of its neighbors Dmj, even though the particle i receives the geometric contribution
WjðxiÞ from the particle j. Therefore the particles i and j can belong to different fluids without having their density unphys-
ically affected by the other fluid close to the interface. Note that the terms ni are purely geometrical since they are only asso-
ciated to the particle spatial distribution through the kernel W.

Substituting (21) in (9), a dP becomes
dqi ¼ Dmi
P

j
rWjðxiÞ � ðdwi � dwjÞ

+
dP ¼

P
i

pi
q2

i
dqiDmi ¼

P
i

pi
n2

i

P
j
rWjðxiÞ � ðdwi � dwjÞ

¼
P

i
hrpiðxiÞ � dwiDVi

ð22Þ
Similarly to the work done by Bonet and Lok [5] one can rearrange the indexes in the double summation and get the expres-
sion for the pressure gradient
hrpiðxiÞ ¼ ni

X
j

pi

n2
i

þ
pj

n2
j

 !
rWjðxiÞ ð23Þ
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Note that using such a variational principle we demonstrate that the formulation by Hu and Adams [2] leads to an Hamil-
tonian system of particles.

However, the density representation given in (21) cannot be used if free surfaces are present in the fluid domain X. In this
case the density will unphysically decrease as already commented. Moreover, if particles have different sizes formula (21)
cannot take into account the mass distribution. In fact, the particle i has no information about the masses of its neighbor
particles and gives the same geometric weight to each of them.
4.3. Present formulation

Following [17], the proposed formulation is based on the use of a Shepard kernel for the density evaluation through
� q � ðxÞ ¼
P
j2X

DmjW
S
j ðxÞ; WS

j ðxÞ ¼
WjðxÞ
CX ðxÞ ;

CXðxÞ ¼
P
k2X

WkðxÞDVk; 8x 2 X

8><
>: ð24Þ
The Shepard kernel WS is normalized by definition and therefore the identity
X
j2X

WS
j ðxÞDVj ¼ 1 8x 2 X ð25Þ
is always satisfied and does not depend on the number of particles. The summation for calculating the term CX ðxÞ is ex-
tended only to the particles belonging to the fluid X containing the point x. For this reason, in (24) and (25) the indices
in the summation are restricted to the particles belonging to the generic fluid X . In this way the discontinuities of the density
field are treated explicitly.

Note that the density representation (24) is conceptually different from formula (19) since the Shepard kernel WS is func-
tion of the particle volume distribution DV . Thus, one needs to know the volume distribution to perform the density eval-
uation through Eq. (24). A way to obtain this volume distribution could be to use a tessellation. However, this procedure
would be complex and costly, so here we prefer to obtain the volumes through their time evolution given by the continuity
Eq. (5).

As a consequence, the use of Eq. (24) leads to a relaxed link between the mass Dmi, volume DVi and density qi of the gen-
eric ith particle. Therefore, the direct link Dmi ¼ qiDVi is not used anymore.

Then, to be consistent with the fact that the density is evaluated thanks to a Shepard renormalization we evaluate the
divergence of the velocity as
� divðuÞ�i ¼
1
Ci

X
j

ðuj � uiÞ � rWjðxiÞDVj ð26Þ
where the summation is extended to the whole particle neighbourhood. In this way the discontinuity of the tangential veloc-
ity field at the interface will be regularized by Eq. (26). Conversely, as already stressed, the density discontinuities are explic-
itly treated through Eq. (24).

Substituting the form (26) of the divergence operator in (9,b) dP becomes
dP ¼ �
X

i

pi � divðdwÞ�iDVi ¼
X

i

pi

Ci

X
j

ðdwi � dwjÞ � rWjðxiÞDVj

" #
DVi ¼

X
i

� rp�i � dwiDVi ð27Þ
which leads to a new discrete formula for the smoothed pressure gradient �rp �
� rp�i ¼
X

j

pi

Ci
þ

pj

Cj

� �
rWjðxiÞDVj ð28Þ
Summarizing, the formulation proposed in this work discretizes the continuum system of governing Eq. (6) in the following
way: at the generic time t, the positions, masses and volumes of the particles are known and, therefore, it is possible to eval-
uate the following quantities
CXi ¼ umk2XWkðxiÞDVk

� q�i ¼
P

j2XDmjWjðxiÞ

CXi

pðxiÞ ¼
c2

0Xq0X
cX

�q�i
q0X

� �cX � 1
h i

; 8xi 2 X

8>>>>>><
>>>>>>:

ð29Þ
After the updated density and pressure distributions are known, the fundamental time derivatives can be evaluated by
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Dxi
Dt ¼ ui

D logJ i
Dt ¼

P
j
ðuj � uiÞ �

rWjðxiÞ
Ci

DVj

� q�i
Dui
Dt ¼ �

P
j

pi
Ci
þ pj

Cj

� �
rWjðxiÞDVj þ FV þ FS þ FB

8>>>>><
>>>>>:

ð30Þ
Finally, using these time derivatives it is possible to update volumes, velocities and positions of the particle system.
The masses Dmi are fixed (that is, they do not change in time) and, therefore, the global mass of the system is pre-
served. Further, the pressure gradient formulation, being obtained through the PVW, preserves both linear and angular
momenta. With respect to this, FV and FS have to be properly chosen since not all the formulations available in the
literature are conservative. Anyway, we postpone this facet in the following section. Once again, we underline that
the present scheme allows modeling both interfaces and free surfaces; note that if one considers only one fluid it sim-
plifies as CXi ¼ Ci.
4.3.1. Viscous and surface tension forces
Regarding the viscous and surface tension forces, the work by Hu and Adams [2] can be adapted to the present formula-

tion, as shown in this section. However since in the present work we are not dealing with flows in which surface tension
plays a relevant role, we postpone a detailed analysis of the surface tension formulation to a future work.

Following Flekkøy et al. [18,2] the inter-particle averaged shear tensor TV
ij whose compressible part is neglected can be

approximated as
TV
ij ¼

2lilj

li þ lj

1
r2

ij

½ðxi � xjÞ � ðui � ujÞ þ ðui � ujÞ � ðxi � xjÞ� ð31Þ
where l is the dynamic viscosity coefficient and rij is the distance between particles i and j. The viscous force FV acting on the
generic particle i can be evaluated through the discrete formula
FV
i ¼

1
2

X
j

1
Ci
þ 1

Cj

� �
TV

ijrWjðxiÞDVj ð32Þ
Neglecting again the compressibility effects, this formula can be rewritten as (for details see [2])
FV
i ¼

X
j

2lilj

li þ lj

1
Ci
þ 1

Cj

� �
ðxi � xjÞ � rWjðxiÞ

r2
ij

ðui � ujÞDVj ð33Þ
which resembles a mixing of the formul� adopted by Morris et al. [19] and Monaghan [9] with the presence
of the corrective term ½1=Ci þ 1=Cj�. Anyway, differently from the equation proposed by Monaghan [9] (33), does
not preserve the angular momentum. A possible adaptation of the Monaghan formula to the present formulation
is
FV
i ¼

X
j

8lilj

li þ lj

1
Ci
þ 1

Cj

� �
ðxi � xjÞ � ðui � ujÞ

r2
ij

rWjðxiÞDVj ð34Þ
The expression (34) still preserves linear and angular momenta and, for this reason, is used in all the test cases shown in the
present work. Note that without the corrective term ½1=Ci þ 1=Cj� in formul� (33) and (34), the viscous force unphysically
decreases close to the free surface as shown in [20].

To model the surface tension, a continuous surface force (CSF) model [21] can be adopted. To simplify the notation we
consider only two fluids (X ;Y) here. The surface tension FXYSi acting on the generic ith particle belonging to the fluid X
due to the presence of Y, can be evaluated by
FXYSi ¼ divðTXYSi Þ 8i 2 X

TXYSi ¼ rXY 1
jrCi j

I
d jrCij2 �rCi �rCi

� �
8<
: ð35Þ
where TXYSi is the surface stress tensor and rXY is the surface tension coefficient between the fluids X and Y; d is the spatial
dimension of the problem. The tensor TXYSi can be evaluated through the spatial gradient of a color index C which has a unit
jump across the interface between X and Y
CYi ¼
0 i 2 X
1 i 2 Y

�
ð36Þ
In the present formulation this gradient rCXYi can be evaluated as
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rCXYi ¼
X
j2Y

CYi
Ci
þ

CYj
Cj

 !
rWjðxiÞDVj; 8i 2 X ð37Þ
where CYi ¼ 0 by definition since particle i belongs to fluid X . Note that this formulation provides surface tension effects be-
tween two different fluids but it does not produce any surface tension on a free surface (where rC becomes zero). Finally,
the divergence of the surface stress tensor TXYSi is evaluated through a discrete operator similar to the one used for the pres-
sure gradient (see second Eq. (28))
FXYSi ¼ divðTXYSi Þ ¼
X

j

TXYSi

Ci
þ

TXYSj

Cj

 !
rWjðxiÞDVj ð38Þ
For interface flows where surface tension effects are negligible a spurious fragmentation of the interface can take place. To
prevent this, a small repulsive force is introduced in the pressure gradient
rpi ¼
X

j

pi

Ci
þ

pj

Cj

� �
rWjðxiÞDVj þ �I

X
j2XC

pi

Ci

				
				þ pj

Cj

				
				

� �
rWjðxiÞDVj 8i 2 X ð39Þ
where �I ranges between 0:01 and 0:1, and the second summation applies to all the particles which do not belong to the fluid
of the ith particle; the latter set of particles is noted by XC .
Fig. 2. Initial fluid domain.

Fig. 3. Interface location and velocity field at two different times.
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5. Validation results

5.1. Air bubble rising in water

We consider an air bubble rising in water at rest in a closed domain. The present formulation results are compared to
those by Sussman et al. [22], obtained by solving the problem on a fixed grid with a Level-Set algorithm to capture the
air–water interface.

The flow is characterized by the following dimensionless Reynolds Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2RÞ3g

q
=mL ¼ 1000 and Bond Bo ¼

4qLgR2=r ¼ 200 numbers, where L stands for liquid. Since the latter is quite large the surface tension effects can be ne-
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Fig. 4. Air bubble rising in water. Blue squares correspond to the present SPH model and red diamonds to the Level-Set solution in [22]. (For interpretation
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glected. The two fluids are defined by their density qG=qL ¼ 0:001 and kinematic viscosity mG=mL ¼ 128 ratios, where G stands
for gas. The domain is ten bubble radius high and six radius wide. The initial configuration is shown in Fig. 2. Particles are
initially distributed on a regular lattice. Three spatial resolutions have been run. Results shown in Figs. 3 and 4 are for the
finest one Dx=R ¼ 0:025. The gas has a sound speed equal to cG ¼ 198

ffiffiffiffiffiffi
gR

p
while the liquid one is cL ¼ 14

ffiffiffiffiffiffi
gR

p
. Polytropic

constants are equal to cL ¼ 7 for the liquid and cG ¼ 1:4 for the gas. The parameter �I of Eq. (39) is set to 0.08 for this
case.

Fig. 3 shows the bubble shape evolution and velocity magnitudes while it raises in the water column. The bubble shows a
strong deformation to take a horseshoe shape, and eventually splits into three main parts. This evolution is further analyzed
in Fig. 4 where the comparison between the present results and the Level-Set ones are shown at 9 different times. A good
agreement is found between the two sets of results at all the instants shown. Some details are different due to the different
nature of the two numerical schemes. It must be noted that the SPH results are convergent in space (an example of conver-
gence of the model is shown on the next validation test case).
Fig. 6. Vorticity of the Level-Set formulation.

Fig. 5. Vorticity of the present SPH formulation.
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5.2. Rayleigh–Taylor instabilities

In the present section we consider the problem of the Rayleigh–Taylor instability as this test case requires an accurate
modeling of the interface between two different fluids.

For SPH solutions with incompressible formulations we address the reader to the works of Cummins and Rudman [23]
and Hu and Adams [3].

The computation domain is rectangular (twice as high as long) with particles initially distributed on a regular lat-
tice. The domain is initially composed of two fluids separated by an interface located at y ¼ 1� sinð2pxÞ. In the lower
part lies a light fluid X of density qX ¼ 1 while the heavy fluid Y above the interface is of density qY ¼ 1:8. The Rey-
nolds number is Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH=2Þ3g

q
=m ¼ 420 based on the half-height H=2 of the domain and on an equal kinematic vis-

cosity m for both fluids. In the state equation c ¼ 7 for both fluids. The coefficient �I is set equal to 0.01. Variations of
this parameter (between 0.005 and 0.02) show negligible effects on the solution. No-slip conditions are enforced on
the solid boundaries through ghost particles by mirroring both the normal and tangential velocities (see for example
[19,24]).

Since the vorticity is generated at both the interface between the two fluids and in the boundary layer on the solid
wall, the flow evolution is very complex, as shown in Fig. 5. In this figure, the present SPH formulation is compared to a
reference solution given by a Level-Set solver [25] at three different times of the evolution. Both results exhibit similar
vorticity patterns and interface shapes (see Figs. 5 and 6) even though local differences are visible. In particular, the SPH
vorticity contour is more noisy due to the particle disorder. For what concerns the intensity of the vorticity, the two
solvers predict quite similar values even if in some fluid regions the Level-Set solution shows a more intense field. This
leads to a larger roll-up of the interface at the center of the domain with respect to the one obtained by the SPH
scheme.

Fig. 7 shows the spatial convergence of the two models by using three different resolutions. Both methods converge and
the main differences between the two solutions are concentrated in the area of higher gradients. Nonetheless the ways in
which the SPH and Level-Set models converge are quite different. The SPH convergence rate is clearly faster than the Le-
vel-Set method. Actually, if one considers the coarsest resolution, the SPH solution already presents formed roll-ups close
to the ones of the finest resolution.

Besides, it must be noted that the results obtained with the proposed method are much closer to reference solutions (Le-
vel-Set here or Marker-And-Cell in [23]) than previously published SPH results (see e.g. the incompressible solutions in [3]
and [23]).
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5.3. Lock-release gravity currents

To illustrate the ability of the present model to simulate flows involving both multi-fluids and a free surface, we consider
the gravity currents resulting from the instantaneous release of a dense fluid initially at rest behind a lock gate into a less
dense fluid.

Two configurations are first considered with the same initial geometry but with different density and viscosity ratios. In
the two cases, which are presented in Fig. 8, the heavier fluid X presents an evolution similar to a dam break flow. Actually,
after the release of the gate, a tongue of fluids propagates at a velocity close

ffiffiffiffiffiffi
gH

p
where H is the initial fluid height. None-

theless, due to the presence of the lighter fluid Y, the heavier fluid front is rounded and its velocity decreases in time. Increas-
ing the density ratio the heavier fluid front is faster, as expected, and its shape is more rounded. This is due to more intense
shear effects as it is visible through the velocity contours drawn in Fig. 10. At the instants plotted in this figure, the front
velocities are about 50% and 80% of

ffiffiffiffiffiffi
gH

p
, respectively for the lower and higher density ratios. The gravity currents also in-

duce a motion of the free surface which is more intense when the density ratio increases.
A third configuration is presented in Fig. 9. Here we use the same parameters of the configuration already described but

set an higher column of heavier fluid behind the gate. This higher amount of fluid X generates more intense gravity currents
as it is exhibited in Fig. 10 which shows a detail of the flow in the vicinity of the front. This induces large motions of the free
surface leading to a violent sloshing flow where the two fluids are partially mixed, as illustrated in Fig. 9.
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

t (g/H)½= 0.00
ρX / ρY = 1.5

μX / μY = 1.23

X Y

y/2H

x/2H

H

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

t (g/H)½= 0.00
ρX / ρY = 2.0

μX / μY = 1.41

YX

x/2H

y/2H



0 0.5 1 1.5 2

0

0.5

1

1.5

2
t (g/H)½= 0.00

y/2H

x/2H

ρX / ρY =2.00

μX / μY =1.41

YHX

0 0 . 5 1 1 . 5 2

00. 5 11. 5 2
t ( g / H ) ½= 1 . 6 0

y / 2 H

x / 2 H

0 0.5 1 1.5 2

00.51
1.52 t (g/H)½= 3.01

y/2H x/2H00

.

511

.

52

0

0.5

1

1.5

2

t (g/H
)

½=5.13y/2H

x/2H

0 0.5 1 1.5 2
0 0.5 1 1.5 2

t (g/H)
½=6.38y/2H

x/2H



N. Grenier et al. / Journal of Computational Physics 228 (2009) 8380–8393 8393
6. Conclusion

A new SPH formulation for simulating interface flows has been presented. It has been derived following a Lagrangian var-
iational approach resulting in an Hamiltonian system of particles. When deriving this formulation a specific care has been
paid to preserve an accurate description of the fields close to the interface. In particular, a renormalization procedure is used
to ensure the preservation of the discontinuity of the density across the interface. This formulation is also characterized by
the fact that it permits to model multi-fluid flows together with the presence of a free surface.

After a detailed description of the proposed formulation, a number of test cases have been performed on three different
test cases. An air bubble rising by gravity in a water column at rest has first been studied. A good agreement has been found
in comparison to the Level-Set simulation available in the literature. Then, Rayleigh–Taylor instabilities have been investi-
gated in terms of accuracy and convergence. The comparison with a reference Level-Set solution has shown the quick con-
vergence of the proposed formulation, and its capability to accurately describe such a complex interface evolution. The
results obtained are more accurate than previously published SPH simulations [3,23]. Finally, the capabilities of the present
formulation have been further illustrated on lock-release gravity currents cases. Three different configurations have been
studied in terms of gravity currents intensity and resulting free surface motion. The influence of the density ratio has been
investigated as well as the one of the amount of heavier fluid initially behind the gate, leading in some cases to strong slosh-
ing with mixing of the two fluids.
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